facs1/4 Jupyter Notebook lamindata Binder

Flow cytometry#

You’ll learn how to manage a growing number of flow cytometry data shards as a single queryable collection.

Specifically, you will

  1. read a single .fcs file as an AnnData and seed a versioned collection with it (facs1/4, current page)

  2. append a new data shard (a new .fcs file) to create a new version of the collection (facs2/4)

  3. query individual files and cell markers (facs3/4)

  4. analyze the collection and store results as plots (facs4/4)

Setup#

!lamin init --storage ./test-facs --schema bionty
Hide code cell output
💡 connected lamindb: testuser1/test-facs
import lamindb as ln
import bionty as bt
import readfcs

bt.settings.organism = "human"  # globally set organism to human
💡 connected lamindb: testuser1/test-facs
ln.transform.stem_uid = "OWuTtS4SApon"
ln.transform.version = "0"
ln.track()
💡 notebook imports: bionty==0.42.4 lamindb==0.69.2 pytometry==0.1.4 readfcs==1.1.7 scanpy==1.10.0
💡 saved: Transform(uid='OWuTtS4SApon6K79', name='Flow cytometry', key='facs', version='0', type=notebook, updated_at=2024-03-28 10:26:34 UTC, created_by_id=1)
💡 saved: Run(uid='ekomQiix4oykRaAVRgHO', transform_id=1, created_by_id=1)

Ingest a first artifact#

Access #

We start with a flow cytometry file from Alpert et al., Nat. Med. (2019).

Calling the following function downloads the artifact and pre-populates a few relevant registries:

ln.core.datasets.file_fcs_alpert19(populate_registries=True)
PosixPath('Alpert19.fcs')

We use readfcs to read the raw fcs file into memory and create an AnnData object:

adata = readfcs.read("Alpert19.fcs")
adata
AnnData object with n_obs × n_vars = 166537 × 40
    var: 'n', 'channel', 'marker', '$PnB', '$PnE', '$PnR'
    uns: 'meta'

It has the following features:

adata.var.head(10)
n channel marker $PnB $PnE $PnR
Time 1 Time 32 0,0 2097152
Cell_length 2 Cell_length 32 0,0 128
CD57 3 (In113)Dd CD57 32 0,0 8192
Dead 4 (In115)Dd Dead 32 0,0 4096
(Ba138)Dd 5 (Ba138)Dd 32 0,0 4096
Bead 6 (Ce140)Dd Bead 32 0,0 16384
CD19 7 (Nd142)Dd CD19 32 0,0 4096
CD4 8 (Nd143)Dd CD4 32 0,0 4096
CD8 9 (Nd144)Dd CD8 32 0,0 4096
IgD 10 (Nd146)Dd IgD 32 0,0 8192

Transform: normalize #

In this use case, we’d like to ingest & store curated data, and hence, we split signal and normalize using the pytometry package.

import pytometry as pm

First, we’ll split the signal from heigh and area metadata:

pm.pp.split_signal(adata, var_key="channel", data_type="cytof")
'area' is not in adata.var['signal_type']. Return all.
adata
AnnData object with n_obs × n_vars = 166537 × 40
    var: 'n', 'channel', 'marker', '$PnB', '$PnE', '$PnR', 'signal_type'
    uns: 'meta'

Normalize the collection:

pm.tl.normalize_arcsinh(adata, cofactor=150)

Note

If the collection was a flow collection, you’ll also have to compensate the data, if possible. The metadata should contain a compensation matrix, which could then be run by the pytometry compensation function. In the case here, its a cyTOF collection, which doesn’t (really) require compensation.

Validate: cell markers #

First, we validate features in .var using CellMarker:

validated = bt.CellMarker.validate(adata.var.index)
13 terms (32.50%) are not validated for name: Time, Cell_length, Dead, (Ba138)Dd, Bead, CD19, CD4, IgD, CD11b, CD14, CCR6, CCR7, PD-1

We see that many features aren’t validated because they’re not standardized.

Hence, let’s standardize feature names & validate again:

adata.var.index = bt.CellMarker.standardize(adata.var.index)
validated = bt.CellMarker.validate(adata.var.index)
5 terms (12.50%) are not validated for name: Time, Cell_length, Dead, (Ba138)Dd, Bead

The remaining non-validated features don’t appear to be cell markers but rather metadata features.

Let’s move them into adata.obs:

adata.obs = adata[:, ~validated].to_df()
adata = adata[:, validated].copy()

Now we have a clean panel of 35 validated cell markers:

validated = bt.CellMarker.validate(adata.var.index)
assert all(validated)  # all markers are validated

Register: metadata #

Next, let’s register the metadata features we moved to .obs.

For this, we create one feature record for each column in the .obs dataframe:

features = ln.Feature.from_df(adata.obs)
ln.save(features)

We use the Experimental Factor Ontology through Bionty to create a “FACS” label:

bt.ExperimentalFactor.public().search("FACS").head(2)  # search the public ontology
ontology_id definition synonyms parents molecule instrument measurement __ratio__
name
fluorescence-activated cell sorting EFO:0009108 A Flow Cytometry Assay That Provides A Method ... FAC sorting|FACS [] None None None 100.0
BALB/c EFO:0000602 Balb/C Is A Mouse Strain Of Albion Mice. BALBc|BALB/cJ|C [] None None None 90.0

We found one for “FACS”, let’s save it to our in-house registry:

# import the FACS record from the public ontology and save it to the registry
facs = bt.ExperimentalFactor.from_public(ontology_id="EFO:0009108")
facs.save()

We don’t find one for “CyToF”, however, so, let’s create it without importing from a public ontology but label it as a child of “is_cytometry_assay”:

cytof = bt.ExperimentalFactor(name="CyTOF")
cytof.save()
is_cytometry_assay = bt.ExperimentalFactor(name="is_cytometry_assay")
is_cytometry_assay.save()
cytof.parents.add(is_cytometry_assay)
facs.parents.add(is_cytometry_assay)

is_cytometry_assay.view_parents(with_children=True)
_images/39032143a0d71298dba15e335014be4ac484ed75b6d9cac42bd9bb4e8c07ead1.svg

Let us look at the content of the registry:

bt.ExperimentalFactor.df()
uid name ontology_id abbr synonyms description molecule instrument measurement public_source_id created_at updated_at created_by_id
id
3 21Qymj4Q is_cytometry_assay None None None None None None None NaN 2024-03-28 10:26:41.474000+00:00 2024-03-28 10:26:41.474020+00:00 1
2 ogoPdeOk CyTOF None None None None None None None NaN 2024-03-28 10:26:41.460697+00:00 2024-03-28 10:26:41.460720+00:00 1
1 36GhLFoE fluorescence-activated cell sorting EFO:0009108 None FAC sorting|FACS A Flow Cytometry Assay That Provides A Method ... None None None 38.0 2024-03-28 10:26:41.439504+00:00 2024-03-28 10:26:41.439531+00:00 1

Register: data & annotate with metadata #

features = ln.Feature.lookup()
experimental_factors = bt.ExperimentalFactor.lookup()
organisms = bt.Organism.lookup()
artifact = ln.Artifact.from_anndata(
    adata, description="Alpert19"
)
... storing '$PnE' as categorical
... storing '$PnR' as categorical
artifact.save()
artifact.features.add_from_anndata(var_field=bt.CellMarker.name)

Inspect the registered artifact#

Inspect features on a high level:

artifact.features
Features:
  var: FeatureSet(uid='QudxBzxMl73zXUo9l5iY', n=35, type='number', registry='bionty.CellMarker', hash='qsFCWDkvYitNDbgVsVd5', updated_at=2024-03-28 10:26:41 UTC, created_by_id=1)
    'CD57', 'Cd19', 'Cd4', 'CD8', 'Igd', 'CD85j', 'CD11c', 'CD16', 'CD3', 'CD38', 'CD27', 'CD11B', 'Cd14', 'Ccr6', 'CD94', 'CD86', 'CXCR5', 'CXCR3', 'Ccr7', 'CD45RA', ...
  obs: FeatureSet(uid='EshIYFlw0mu7CUYg3Qxj', n=5, registry='core.Feature', hash='fn23ch8Df00zg3tBpZh_', updated_at=2024-03-28 10:26:41 UTC, created_by_id=1)
    Time (number)
    Cell_length (number)
    Dead (number)
    (Ba138)Dd (number)
    Bead (number)

Inspect low-level features in .var:

artifact.features["var"].df().head()
uid name synonyms gene_symbol ncbi_gene_id uniprotkb_id organism_id public_source_id created_at updated_at created_by_id
id
1 1dPH2YeJqtGd CD57 B3GAT1 27087 Q9P2W7 1 18 2024-03-28 10:26:37.923976+00:00 2024-03-28 10:26:37.924000+00:00 1
2 7KaN0QtWWLnk Cd19 CD19 930 P15391 1 18 2024-03-28 10:26:37.924091+00:00 2024-03-28 10:26:37.924103+00:00 1
3 rKHBZ9JlBdU5 Cd4 CD4 920 B4DT49 1 18 2024-03-28 10:26:37.924188+00:00 2024-03-28 10:26:37.924198+00:00 1
4 5YxpB5QNiCWr CD8 CD8A 925 P01732 1 18 2024-03-28 10:26:37.924281+00:00 2024-03-28 10:26:37.924291+00:00 1
5 7basFKNKrv4j Igd None None None 1 18 2024-03-28 10:26:37.924373+00:00 2024-03-28 10:26:37.924382+00:00 1

Use auto-complete for marker names in the var featureset:

markers = artifact.features["var"].lookup()
markers.cd14
CellMarker(uid='5JHfKNo5DC8y', name='Cd14', synonyms='', gene_symbol='CD14', ncbi_gene_id='4695', uniprotkb_id='O43678', updated_at=2024-03-28 10:26:37 UTC, organism_id=1, public_source_id=18, created_by_id=1)

In a plot, we can now easily also show gene symbol and Uniprot ID:

import scanpy as sc

sc.pp.pca(adata)
sc.pl.pca(
    adata,
    color=markers.cd14.name,
    title=(
        f"{markers.cd14.name} / {markers.cd14.gene_symbol} /"
        f" {markers.cd14.uniprotkb_id}"
    ),
)
_images/a5f008e051116a89cf5e417908a8b626160178b7ad9fa41064631acc878d21c6.png
artifact.view_lineage()
_images/0b534855364c7eede5b47e903d43e3280c08f5475d2c77c9aa322ec8551fb5d5.svg

Create a collection from the artifact#

collection = ln.Collection(
    artifact, name="My versioned cytometry collection", version="1"
)

collection
Collection(uid='BXlEohVyuYed492lqYvj', name='My versioned cytometry collection', version='1', hash='VsTnnzHN63ovNESaJtlRUQ', visibility=1, transform_id=1, run_id=1, artifact_id=1, created_by_id=1)

Let’s inspect the features measured in this collection which were inherited from the artifact:

collection.features
Features:
  var: FeatureSet(uid='QudxBzxMl73zXUo9l5iY', n=35, type='number', registry='bionty.CellMarker', hash='qsFCWDkvYitNDbgVsVd5', updated_at=2024-03-28 10:26:41 UTC, created_by_id=1)
    'CD57', 'Cd19', 'Cd4', 'CD8', 'Igd', 'CD85j', 'CD11c', 'CD16', 'CD3', 'CD38', 'CD27', 'CD11B', 'Cd14', 'Ccr6', 'CD94', 'CD86', 'CXCR5', 'CXCR3', 'Ccr7', 'CD45RA', ...
  obs: FeatureSet(uid='EshIYFlw0mu7CUYg3Qxj', n=5, registry='core.Feature', hash='fn23ch8Df00zg3tBpZh_', updated_at=2024-03-28 10:26:41 UTC, created_by_id=1)
    Time (number)
    Cell_length (number)
    Dead (number)
    (Ba138)Dd (number)
    Bead (number)

This looks all good, hence, let’s save it:

collection.save()

Annotate by linking cytof & organism labels:

collection.labels.add(experimental_factors.cytof, features.assay)
collection.labels.add(organisms.human, features.organism)
collection.view_lineage()
_images/25f8b21248f737a7662a6d20d82c12e161e54fc5b4de7aaf77fab52540f4eda4.svg